The World Health Organization [WHO] recommends a genotype-specific human papillomavirus [HPV] vaccination as a primary prevention strategy to control the burden of cervical cancer globally. In Ethiopia, where the non-vaccine-targeted HPV genotypes have not been adequately studied, a vaccination initiative was launched in 2018 targeting HPV-6,-11, -16, and -18 for girls aged 14–18 years. The co-existence of both vaccine-targeted and non-targeted genotypes is a serious concern, as it can accelerate cancer progression. Therefore, this study was conducted to determine the prevalence of non-vaccine-targeted HPV genotypes and assess the level of multiple infections with other genotypes in eastern Ethiopia. A health facility-based cross-sectional study including 110 women with positive HPV DNA results was conducted from April to August 2021. A structured questionnaire to collect demographic and clinical data was used. Cervical swabs were collected using L-shaped FLOQSwabs. Women's cytological profile was determined based on Pap smear test results. An automated nucleic acid extraction system using STARMag 96 ProPrep Universal Extraction Kit was utilized following the manufacturer's protocol. An amplification assay in real-time was employed to amplify and identify the HPV Late 1 [L1] gene, which is utilized for genotyping purposes. Following this, the collected data was entered into Epi data version 3.1 software, and the analysis was performed using STATA version 14. A total of 110 women [age range 30–60 years, mean age = 36.5 years and SD ± 6.9] had positive HPV DNA results and were included in the study. Among these, 108 women had valid co-testing [Pap test and HPV DNA test] results for further analysis, and the results of the remaining 2 women were rejected. Overall, the prevalence of non-vaccine-targeted HPV was 56 (51.8%, 95%CI [0.42, 0.61]), of which 28 women (25.4%, 95%CI [0.18, 0.34]) had a single non-vaccine HPV genotype infection. The remaining 29 women (26.4%, 95% CI: 0.190–0.355) experienced multiple infections. The non-vaccine-targeted genotypes of HPV-35 accounted for 11 cases (10%, 95%CI [0.06, 0.17]), HPV-68 was detected in 9 women (8.2%, 95%CI [0.04, 0.15]), HPV-56 and HPV-66 were both found in 8 cases each (7.3%, 95%CI [0.04, 0.14]) of the total. In addition, out of these 108 women, 93 (86.1%, 95%CI [0.78, 0.91]) had low-grade squamous intraepithelial lesions, 13 (12%, 95%CI [0.07, 0.20]) no intraepithelial lesion or malignancy, and two (1.9%, 95%CI [0.01, 0.07]) high-grade squamous intraepithelial lesions. Furthermore, there was no statistical difference [p = 0.755] between vaccine-targeted and non-vaccine-targeted genotypes as the primary cause of cervical lesions. In conclusion, the findings of the present study highlight the existence of a notable prevalence of multiple infections caused by non-vaccine-targeted HPV genotypes. Therefore, it is recommended that both the Federal and regional health bureaus to evaluate the range of hr HPV genotypes protected by the current HPV vaccine and explore the option of transitioning from the quadrivalent HPV vaccine to a novavalent vaccine that includes seven high-risk HPV genotypes.
Read full abstract