TEGs are devices that convert heat directly into electricity through the Seebeck effect, offering a promising solution for waste heat recovery in various industries. In this research, COMSOL Multiphysics 6.0 was used to conduct a comprehensive 3-dimensional computational study of TEGs. Integrating thermal and electrical models in COMSOL facilitates a detailed understanding of the thermoelectric phenomenon. Applying six distinct temperature gradients, temperature and electrical distribution, power output, and efficiency of the TEG was thoroughly analysed. Experimental validation confirms strong agreement between simulation and experimental data, emphasizing accuracy. The average efficiency for the TEG at 1 Ω load is 3.12 %, increasing to 3.62 % for a 2 Ω load. The relative error between the computational model and the experimental model was 5 % for open circuit, 12.56 % for closed circuit at 1 Ω, and 12.14 % for closed circuit at 2 Ω, affirming the accuracy of the computational approach. Therefore, the computational model is validated by experimental results.Moreover, the findings highlight the relationship between external load resistance and power output, revealing that the maximum output power was achieved when the external load resistance matched the internal load resistance at 2 Ω. This work also significantly contributes to advancing the computational modelling of TEGs, validated through rigorous experimental analysis.
Read full abstract