The prevalence of autism and attention deficit/hyperactivity disorders is increasing worldwide. Recent studies suggest the excessive intake of ultra-processed food plays a role in the inheritance of these disorders via heavy metal exposures and nutritional deficits that impact the expression of genes. In the case of the metallothionein (MT) gene, biomarker studies show dietary zinc (Zn) deficits impact MT protein levels in children with autism and are associated with the bioaccumulation of lead and/or mercury in children exhibiting autism/attention deficit/hyperactivity disorders symptomology. The impact of dietary changes on lead and mercury exposures and MT gene behavior could be determined using a randomized test and control group design. Pregnant women serving in the test-group would participate in a nutritional epigenetics education intervention/course designed to reduce ultra-processed food intake and heavy metal levels in blood while increasing whole food intake and MT and Zn levels. Changes in maternal diet would be measured using data derived from an online diet survey administered to the test and control groups pre-post intervention. Changes in maternal lead, mercury, Zn, and MT levels would be measured via blood sample analyses prior to the intervention and after childbirth via cord blood analyses to determine infant risk factors.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
846138 Articles
Published in last 50 years
Articles published on Gene Expression
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
798617 Search results
Sort by Recency