Sequence-specific combinations of purine analogs, such as fludarabine or 6-mercaptopurine (6-MP), administered prior to cytosine arabinoside (ara-C) have been shown to abrogate ara-C resistance in human leukemia cells in vitro and in patients with relapsed acute myeloid or lymphoblastic leukemias. The two-drug combination of 6-MP plus ara-C results in greater cytotoxicity than that achieved with either ara-C or 6-MP alone. Further preclinical investigations have shown that the addition of PEG-asparaginase (PEG-ASNase) to the combination of 6-MP plus ara-C (6-MP + ara-C + PEG-ASNase) results in 15.6-fold synergism over that achieved with the two-drug regimen. This is due to increased DNA damage leading to apoptotic cell death. Since the intravenous preparation of 6-MP is no longer available and since oral 6-thioguanine (6-TG) provides higher levels of intracellular thioguanine nucleotides than an isotoxic dose of oral 6-MP, we investigated the potential drug synergism of 6-TG plus ara-C plus PEG-ASNase (TGAP) in myeloid (HL60/S, HL60/SN3, U937) and lymphoblastic (CEM/0, CEM/ ara-C/B, CEM/ara-C/I, MOLT-4) leukemia cell lines. The CEM clones, MOLT-4 and HL60/SN3 cell lines expressed functional or measurable p53 protein, while the other cell lines did not. The MTT and trypan blue dye exclusion assays were used to determine drug cytotoxicity. In addition, cellular apoptosis and cellular p53, p21/waf-1 and bcl-2 protein concentrations were determined by FACS analysis and ELISA assays. Sequential exposure to 6-TG (24 h) plus ara-C (24 h) plus PEG-ASNase (24 h) produced 1.3- to 18.3-fold drug synergism over the two-drug combination of 6-TG plus ara-C. The molecular mechanism of synergism was due to the fact that the three-drug combination was capable of downregulating bcl-2 oncoprotein levels in these cell lines even when p53 was absent. These studies strongly demonstrate that the TGAP regimen is highly synergistic in p53-null and p53-expressing leukemia cell lines. We conclude that this combination regimen is collaterally sensitive with ara-C and further evaluation in an investigational phase I trial in relapsed leukemia patients is warranted.
Read full abstract