Phospholipid transfer protein (PLTP) is highly expressed in adipose tissues. Thus, the effect of adipose tissue PLTP on plasma lipoprotein metabolism was examined. We crossed PLTP-Flox-ΔNeo and adipocyte protein 2 (aP2)-Cre recombinase (Cre) transgenic mice to create PLTP-Flox-ΔNeo/aP2-Cre mice that have a 90 and a 60% reduction in PLTP mRNA in adipose tissue and macrophages, respectively. PLTP ablation resulted in a significant reduction in plasma PLTP activity (22%), high-density lipoprotein-cholesterol (21%), high-density lipoprotein-phospholipid (20%), and apolipoprotein A-I (33%) levels, but had no effect on nonhigh-density lipoprotein levels in comparison with those of PLTP-Flox-ΔNeo controls. To eliminate possible effects of PLTP ablation by macrophages, we lethally irradiated PLTP-Flox-ΔNeo/aP2-Cre mice and PLTP-Flox-ΔNeo mice, and then transplanted wild-type mouse bone marrow into them to create wild-type→PLTP-Flox-ΔNeo/aP2-Cre and wild-type→PLTP-Flox-ΔNeo mice. Thus, we constructed a mouse model (wild-type→PLTP-Flox-ΔNeo/aP2-Cre) with PLTP deficiency in adipocytes but not in macrophages. These knockout mice also showed significant decreases in plasma PLTP activity (19%) and cholesterol (18%), phospholipid (17%), and apolipoprotein A-I (26%) levels. To further investigate the mechanisms behind the reduction in plasma apolipoprotein A-I and high-density lipoprotein lipids, we measured apolipoprotein A-I-mediated cholesterol efflux in adipose tissue explants and found that endogenous and exogenous PLTP significantly increased cholesterol efflux from the explants. Adipocyte PLTP plays a small but significant role in plasma PLTP activity and promotes cholesterol efflux from adipose tissues.
Read full abstract