A Cucurbita pepo mutant with multiple defects in growth and development has been identified and characterized. The mutant dwfcp displayed a dwarf phenotype with dark green and shrinking leaves, shortened internodes and petioles, shorter but thicker roots and greater root biomass, and reduced fertility. The causal mutation of the phenotype was found to disrupt gene Cp4.1LG17g04540, the squash orthologue of the Arabidopsis brassinosteroid (BR) biosynthesis gene DWF5, encoding for 7-dehydrocholesterol reductase. A single nucleotide transition (G > A) causes a splicing defect in intron 6 that leads to a premature stop codon and a truncated CpDWF5 protein. The mutation co-segregated with the dwarf phenotype in a large BC1S1 segregating population. The reduced expression of CpDWF5 and brassinolide (BL) content in most mutant organs, and partial rescue of the mutant phenotype by exogenous application of BL, showed that the primary cause of the dwarfism in dwfcp is a BR deficiency. The results showed that in C. pepo, CpDWF5 is not only a positive growth regulator of different plant organs but also a negative regulator of salt tolerance. During germination and the early stages of seedling development, the dwarf mutant was less affected by salt stress than the wild type, concomitantly with a greater upregulation of genes associated with salt tolerance, including those involved in abscisic acid (ABA) biosynthesis, ABA and Ca2+ signaling, and those coding for cation exchangers and transporters.
Read full abstract