Due to the possibility of making analytical determinations in the presence of non-modelled interferents and to identify the analyte of interest, calibrations based on scores of PARAFAC decomposition of three-way data are becoming increasingly important in routine analysis. Furthermore, the IUPAC and EU (European Decision 2002/657/EC) have accepted the definition given by the ISO 11843 for the capability of detection as the minimum net quantity detectable with a pre-set probability of false positive and false negative. What is more, recently our research group has generalised this definition of capability of detection, CCβ, to multivariate calibrations. In practice, CCβ is a good measure of the quality of the calibration because in its definition it brings together analytical sensitivity with precision in analytical determinations. This paper studies the effect of the pre-treatment of the sample, the signal/noise ratio and the second-order advantage on CCβ when using second-order signals modelled by PARAFAC. All of them are experimental factors which influence the quality of the calibration. Analytical pre-treatment is habitual in the analysis of real samples. Specifically, we analyse the effect of the extraction phase and the clean-up of milk samples on the determination of chlortetracycline by HPLC-DAD. It is shown that it is more efficient to do the joint PARAFAC decomposition of the pure standards with the milk samples. Secondly, the effect of asymmetry on CCβ, according to the path of the noise of the signals, is studied. Specifically, in the determination of naphthalene by excitation-emission spectroscopy, EEM, it is the emission spectrum which limits the capability of detection. It is shown that by eliminating the spectra with the poorest signal/noise ratio in this path, the capability of detection can be substantially improved. Thirdly, the impact on CCβ when the second-order advantage is used, that is when PARAFAC calibration is used over samples with an unknown interference not modelled in the calibration step. This is important to apply a PARAFAC calibration to routine analysis in the IUPAC and European Decision framework. Specifically, in the determination of enrofloxacine in poultry feeding water through excitation-emission fluorescence CCβ is evaluated when the PARAFAC is built only with calibration samples or with the calibration samples plus the test samples with uncalibrated and unknown interferent.
Read full abstract