Ion migration is significantly enhanced in lead-halide perovskites with a soft crystal lattice, which can promote the formation of a heterogeneous interface between two such materials with different halide-anion compositions. Here we have deposited a single CsPbI3 nanocrystal (NC) on top of an individual CsPbBr3 microplate to create a mixed-halide CsPbBrxI3-x (0 < x < 3) NC by means of the anion exchange process. The formation of a CsPbBrxI3-x/CsPbBr3 heterostructure is confirmed by the much-enlarged geometric volume of the CsPbBrxI3-x NC as compared to the original CsPbI3 one, as well as by its capability of receiving photogenerated excitons from the CsPbBr3 microplate with a larger bandgap energy. The quantum nature of this heterostructure is reflected from single-photon emission of the composing CsPbBrxI3-x NC, which can also be bulk-like during phase segregation to demonstrate a red shift in the photoluminescence peak that is opposite to the common trend observed in smaller-sized mixed-halide NCs.
Read full abstract