본 연구는 행군 시 발보장구 착용이 하지 근육 활동에 미치는 영향을 알아보는데 목적이 있다. 과회내족과 정상족을 선정하여 트레드밀에서 4.5km/h의 속도로 걷게 하였고 이때 근전도기를 이용하여 하지근육의 근육신호를 수집, 분석하였다. 수집한 데이터를 평균적분근전도와 스펙트럼 분석을 통해 근활성도와 피로도를 알아보았고 SPSS 12.0을 이용하여 통계분석하였다. 실험 결과는 과회내족이 정상족보다 행군 시 근 활성이 큰 것으로 나타났고, 보장구 착용 시 근 활성과 피로도가 줄어드는 경향을 나타냈다. 특히 전경골근과 장비골근의 근육활성 감소와 피로도 감소가 통계적으로 유의한 차이를 나타냈다. 결과적으로 과회내족은 장시간 행군 시 발보장구 착용이 피로도 감소에 효과적이며 이는 잠재적인 하지 근골격계 상해 예방에 도움이 될 것으로 사료된다. The purpose of this study was to examine the effects of customized foot orthotics on lower extremity muscle activity and fatigue during march in combat boots. Four volunteers with normal foot and five volunteers with excessive pronation foot among soldiers on service were fitted with foot orthotics. The electromyography signal from activity of low extremity muscles were collected with surface electromyography device during walking on the treadmill. The walk on the treadmill was performed with a speed of 4.5 km/h. The experiment design for reseach wes composed two experimentation. The first experiment was to examine the muscle activity of lower extremity between normal foot and excessive pronator foot during march. The second experiment was to examine the muscle activity of lower extremity between wearing orthotics and no wearing orthotics. These data were analyzed by the averaged integral EMG and the mean power frequency. The analyzed results were compared by independent T-test method and paired T-test method of SPSS(windows version 12.0). The result of the study were the muscle activity on pronator foot tend to increase during march but a statistically significant increase in muscle fatigue of vastus lateralis and fibularis longus. A statistically significant decrease in muscle activity of anterior tibialis and fibularis longus and fatigue occurred using the customized foot orthotics in volunteers with excessive pronation foot compared to volunteers with normal foot. Clinically, the application of orthotics for the soldiers with excessive pronation foot appears to delay muscle fatigue and prevent from variable foot injuries. This may contribute to enhancing fighting efficiency.
Read full abstract