Emergencies often result in uncontrollable bleeding, which is thought to be the leading cause of death at the scene of the injured. Among various hemostasis scenarios, collagen fiber (CF) is gradually replacing traditional hemostatic materials due to its superior properties and ease of sourcing from animals. Herein, we use CF and the natural herbaceous Bletilla striata as raw materials to prepare a collagen fiber-oxidized Bletilla striata composite hemostatic sponge (CFOB). During the cross-linking process, the triple helix structure of collagen stays intact, and its porous three-dimensional network structure brings excellent bulkiness and water absorption properties. Experiments show that the optimal amount of sponge CFOB-10, namely oxidized Bletilla striata polysaccharide 0.5 mg/mL and CF 5 mg/mL, only needed 25 ± 4.06 s for hemostasis time in the rat liver hemorrhage model. In addition, CFOB meets the safety performance requirements of cytotoxicity classification standard 0. Therefore, the optimal amount of CFOB is an excellent new hemostatic material with application potential.Graphical
Read full abstract