AbstractThe application of 3D laser scanning technology in tunnelling has gained increasing significance in recent years. Laser scanning is an innovative holistic approach for data acquisition in tunnelling regarding the geometrical parameters. It is a distance‐based imaging technique for three‐dimensional and high‐resolution illustration (3D point cloud) of the surrounding rock that can be applied at various times to provide a variety of visualization and analysis possibilities. A new approach deals with excavation forecasting by linking the acquisition of the 3D geometry of previously excavated rounds with the geological documentation of the tunnel face. This approach enables the gathering of information about the expected overbreak or underprofile of subsequent excavation in similar rock conditions. Using this information, an optimization of the borehole positions (especially of the peripheral boreholes) can achieve the best possible excavation profile. This approach offers an improvement of excavation performance and saving potential with regard to excavation quantity and shotcrete consumption. The uniform excavation shape and consistent shotcrete thickness improve tunnel stability and finally increases the service life the tunnel structure.
Read full abstract