This paper presents an innovative and holistic approach to the analysis of the impact of selected design parameters of a new solar community on its environmental performance, in terms of energy efficiency and carbon footprint (green-house gas (GHG) emissions). The design parameters include energy performance level of buildings, density, type of the neighborhood (mixed-use vs residential), location of the commercial center relative to residential areas and the design of the streets. Energy performance is measured as the balance between overall energy consumption for building operations (assuming an all-electric neighborhood) and electricity generation potential through integration of PV panels on available roof surfaces. Greenhouse gas emissions are those associated with building operations and transport.Results of simulations carried out on prototype neighborhoods located in the vicinity of Calgary, Alberta, Canada indicate that, while adopting high-energy efficiency measures can reduce the buildings’ impact by up to 75% in terms of energy consumption and GHG emissions, transport still has a large environmental impact. The parameters of highest impact on transport and its associated GHG emissions are the design of the neighborhood and the distance to the business center. Density, as isolated parameter, has a modest effect on the selected mode of transportation, in terms of using private or public transportation.While this study relates to a specific location and a range of design assumptions, the methodology employed can serve as a template for evaluating design alternatives of new sustainable developments and their environmental impact.
Read full abstract