Recently, the identification of autoantibodies (AT1-AA) targeting the second extracellular loop of angiotensin II type 1 receptor (AT1R-ECII) in patients with coronary heart disease (CHD) offers a novel perspective on the interplay between immunity and cardiovascular disease. However, much remains unknown regarding the functional diversity of AT1-AA. In this study, we measured the levels of AT1-AA in the sera of 306 CHD patients and purified AT1-AA from patient’s sera (n = 127). The subclasses of AT1-AA were categorized based on their impact on intracellular calcium ([Ca2+]i) levels in mouse arterial smooth muscle cells (MASMCs). Our findings revealed 4 distinct [Ca2+]i response patterns indicating the existence of 4 functional subclasses named H1-, H2-, H3-, and H4-AT1-AA. The correlation analysis demonstrated a positive association between H1-AT1-AA and endogenous coagulation, as well as between H2-AT1-AA and exogenous coagulation; no significant correlation was observed between H3-AT1-AA and the indicators we analyzed. Conversely, H4-AT1-AA exhibited a negative correlation with both leukocyte number and bile acid levels. Logistic regression analysis showed that H2-AT1-AA possessed predictive value for severe CHD. Furthermore, in vitro experiments indicated that both H1- and H2-AT1-AA exerted cytotoxic effects on MASMCs, while H4-AT1-AA increased cell viability. Additionally, an AT1-AA-positive rat model was established by subcutaneously injecting with AT1R-ECII peptide, which produced four similar functional subclasses of rat AT1-AA upon active immunization. This study suggested that classifying different functional subclasses of AT1-AAs can facilitate more accurate evaluation of the condition and prognosis in patients with CHD, thereby providing a novel basis for clinical diagnosis and treatment.
Read full abstract