Partial discharge of power equipment is one of the common faults in power systems. How to quickly and accurately determine the location of partial discharge is a problem that needs to be solved in practice. The signal arrival time difference estimation technique in signal processing is one of the effective methods to solve this problem. When the power equipment is partially discharged, an ultrasonic signal is generated. Therefore, the local discharge can be positioned according to the ultrasonic signal, however, the traditional signal arrival time difference estimation methods are not ideal for the actual low signal-to-noise ratio and narrow-band ultrasonic signals. In this paper, an improved correlation coefficient waveform comparison time difference estimation algorithm based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN), threshold denoising is proposed, referred to as CEEMDAN-TDE. Firstly, according to the characteristics of the actual ultrasonic signals, the double-exponential decay oscillation model is used to model the partial discharge ultrasonic signals, and Gaussian white noises are added as the interference signals. secondly, the CEEMDAN threshold denoising is used to improve the signal-to-noise ratio of the partial discharge signals; thirdly, the cross-correlation coefficient is calculated, then the arrival time difference can be obtained by comparing the waveforms of the correlation coefficients, and the partial discharge location information is known. The computer simulations of the CEEMDAN-TDE method, and the generalized correlation method, LMS method, and correlation coefficient waveform comparison method estimation are performed. Experimental results show that the estimating performance in arrival time difference of proposed method, CEEMDAN-TDE, is better than the other three methods’ under low SNR and narrowband. The CEEMDAN-TDE method has the hopeful more application in practice.
Read full abstract