Latent Transforming Growth Factor Beta Binding Protein 2 (LTBP2) is a multi-domain exocrine protein located in the extracellular matrix (ECM) and has been implicated in fibrosis across various organs. However, its role in liver fibrosis remains inadequately understood. This study aims to elucidate the function and mechanism of LTBP2 in hepatic stellate cells (HSCs) activation and liver fibrosis. Our findings indicate that LTBP2 expression is positively correlated with liver fibrosis and is significantly elevated in fibrotic liver tissues from both human and murine models. Importantly, AAV6-mediated knockdown of LTBP2 in HSCs markedly alleviates CCl4-induced liver fibrosis by inhibiting the HSCs activation and reducing collagen deposition in mice. Gain-of-function and loss-of-function experiments confirmed that overexpression or knockdown of LTBP2 can enhance or inhibit the activation of HSCs, proliferation, migration and epithelial-mesenchymal transition (EMT) in LX-2 cells. Mechanistically, chromatin immunoprecipitation (ChIP) assays and dual-luciferase reporter gene assays revealed that Hypoxia-inducible Factor 1α (HIF-1α) promotes LTBP2 expression by directly binding to the LTBP2 promoter region. Furthermore, molecular docking and co-immunoprecipitation (Co-IP) experiments demonstrated an interaction between Lysyl Oxidase Like Protein 1 (LOXL1) and LTBP2. Rescue experiments verified that LTBP2 interacts with LOXL1 via the ERK signaling pathway to promote the activation of HSCs and EMT. Our results provide compelling evidence that the HIF-1α/LTBP2 axis facilitates the activation of HSCs and EMT by interacting with LOXL1 through ERK signaling pathway, suggesting that LTBP2 may serve as a potential therapeutic target for liver fibrosis.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
18794 Articles
Published in last 50 years
Articles published on MAPK Signaling Pathway
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
18247 Search results
Sort by Recency