We evaluated effects of aerobic physical preconditioning on general performance and energy metabolism in skeletal muscle of septic rats. Forty-eight 10-wk-old male Wistar rats were randomly assigned to either Untrained or Trained groups. Aerobic exercise training protocol (AETP) consisted of an 8-week treadmill program. After AETP, performance was evaluated by graded treadmill and functional ambulation testing. Afterwards animals from both groups were randomly assigned to Sham or CLP surgery (cecal ligation and perforation), resulting in the following groups: Sham untrained (ShamU), CLP untrained (CLPU), Sham trained (ShamT), and CLP trained (CLPT). Two days after surgery, animals repeated the ambulation test, and were euthanized after this. Diaphragm, soleus and plantaris muscles were harvested. Mitochondrial electron transport chain enzyme (METC) and creatine kinase (CK) activity were measured. AETP led to significant improvement in performance of distance run and in skeletal muscle function of the Trained group. Forty-eight hours after surgery the CLPT group was able to maintain similar muscle performance as Sham groups. Dysfunction was shown in the diaphragm in METC complexes I and II-III and in locomotive soleus muscles in complex I; CK enzyme activity was significantly increased in sedentary CLPU group in soleus and plantaris muscle, but in the diaphragm there was only a tendency (p=0.07). CLPT animals that were submitted to AETP avoided all these negative results. Taken together our results provide evidence of the positive effects obtained with an aerobic physical preconditioning program on METC and CK enzyme activity related to the diaphragm and locomotive muscles mitigating sepsis-induced energy metabolism dysfunction.
Read full abstract