Area laws for entanglement in quantum many-body systems give useful information about their low-temperature behaviour and are tightly connected to the possibility of good numerical simulations. An intuition from quantum many-body physics suggests that an area law should hold whenever there is exponential decay of correlations in the system, a property found, for instance, in non-critical phases of matter. However, the existence of quantum data-hiding state--that is, states having very small correlations, yet a volume scaling of entanglement--was believed to be a serious obstruction to such an implication. Here we prove that notwithstanding the phenomenon of data hiding, one-dimensional quantum many-body states satisfying exponential decay of correlations always fulfil an area law. To obtain this result we combine several recent advances in quantum information theory, thus showing the usefulness of the field for addressing problems in other areas of physics.
Read full abstract