The therapeutic outcome of photodynamic therapy (PDT) with redaporfin (a fluorinated sulfonamide bacteriochlorin, F2BMet or LUZ11) was improved using Pluronic-based (P123, F127) formulations. Neither redaporfin encapsulated in Pluronic nor micelles alone exhibited cytotoxicity in a broad concentration range. Comprehensive in vitro studies against B16F10 melanoma cells showed that redaporfin-P123 micelles enhanced cellular uptake and increased oxidative stress compared with redaporfin-F127 or photosensitizer alone after short incubation times. ROS-sensitive fluorescent probes showed that the increased oxidative stress is due, at least in part, to a more efficient formation of hydroxyl radicals, and causes strong light-dose dependent apoptosis and necrosis. Tissue distribution and pharmacokinetic studies in tumor-bearing mice show that the Pluronic P123 formulation of redaporfin increases its bioavailability as well as the tumor-to-muscle and tumor-to-skin ratios, in comparison with Cremophor EL and Pluronic F127 formulations. Redaporfin in P123 was most successful in the PDT of C57BL/6J mice bearing subcutaneously implanted B16F10 melanoma tumors. Vascular-targeted PDT combining 1.5 mg kg(-1) redaporfin in P123 with a light dose of 74 J cm(-2) led to 100% complete cures (i.e., no tumor regrowth over one year post-treatment). This remarkable result reveals that modification of redaporfin with Pluronic block copolymers overcomes the resistance of melanoma cells to PDT possibly via increased tumor selectivity and enhanced ROS generation.
Read full abstract