This work aims to evaluate how the particle size of a waste filler in the form of eggshells changes the mechanical properties of biopoly(ethylene terephthalate) (bioPET). BioPET was modified with three different waste fractions: 1.60–3 mm—large particles; 1.60–1 mm—medium particles; 1 mm–200 μm—small particles. Waste filler was added to the biopolymer matrix in the amount of 10 wt.%. Static tensile tests, as well as bending and impact tests, were carried out to assess the strength properties of the waste-enriched materials. Dissipation energy changes and relaxation processes were observed and evaluated by means of a low-cycle dynamic test. Waste particles were shown to be an effective modifier of bioPET by increasing its stiffness (all particle sizes) and strength (the smallest ones). Studies of the wetting angle and mechanical energy dissipation in the first hysteresis loops indicate the better adhesion of small particles to the biopolymer and their greater ability to dissipate mechanical energy.
Read full abstract