Code division multiple access (CDMA) is currently considered as one of the promising technologies that can significantly improve the efficiency of modern and future communication networks. In code division multiple access systems, users can share a dedicated space-frequency-time resource to simultaneously transmit their own traffic. To ensure the separation of individual user streams on the receiving side, each user is provided with his own code sequence embedded in the broadband signal transmitted by this user, the spectrum of which, as a rule, occupies the entire allocated frequency band. When centimeter-and- millimeter wave wireless channels are used as the transmission medium, such factors as fading, multipath, and Doppler scatter can significantly degrade the performance of a code division multiple access system. The standard solution in this situation is to combine code division multiple access with OFDM (orthogonal frequency division multiplexing) technology, known as multicarrier CDMA (MC-CDMA). To ensure the acceptable level of performance of multiple access systems under oversaturated conditions, many novel approaches based on the use of non-orthogonal multiple access (NOMA) have been proposed. The paper considers a variant of multiple access with non-orthogonal coding that is close in approach to sparse coding multiple access (SCMA). The proposed access procedure is based on dividing the allocated time-frequency resource into relatively small clusters and sharing each cluster with its own group of users, equipped with a non-orthogonal cluster code with the ability to change the loading factor. For the proposed class of cluster codes, a general encoding and decoding scheme is presented. Examples of specific cluster code constructions and numerical results are given that allow one to get a number of the parameters for tradeoffs between an increase of the loading factor in the system and additional energy loss.
Read full abstract