With the development of Industry 4.0, discrete manufacturing systems are accelerating their transformation toward flexibility and intelligence to meet the market demand for various products and small-batch production. The flexible flow shop (FFS) paradigm enhances production flexibility, but existing studies often address FFS scheduling and automated guided vehicle (AGV) path planning separately, resulting in resource competition conflicts, such as equipment idle time and AGV congestion, which prolong the manufacturing cycle time and reduce system energy efficiency. To solve this problem, this study proposes an integrated production–transportation scheduling framework (FFSP-AGV). By using the adjacent sequence modeling idea, a mixed-integer linear programming (MILP) model is established, which takes into account the constraints of the production process and AGV transportation task conflicts with the aim of minimizing the makespan and improving overall operational efficiency. Systematic evaluations are carried out on multiple test instances of different scales using the CPLEX solver. The results show that, for small-scale instances (job count ≤10), the MILP model can generate optimal scheduling solutions within a practical computation time (several minutes). Moreover, it is found that there is a significant marginal diminishing effect between AGV quantity and makespan reduction. Once the number of AGVs exceeds 60% of the parallel equipment capacity, their incremental contribution to cycle time reduction becomes much smaller. However, the computational complexity of the model increases exponentially with the number of jobs, making it slightly impractical for large-scale problems (job count > 20). This research highlights the importance of integrated production–transportation scheduling for reducing manufacturing cycle time and reveals a threshold effect in AGV resource allocation, providing a theoretical basis for collaborative optimization in smart factories.
Read full abstract