Simultaneous wireless information and power transfer (SWIPT) has emerged as a pivotal technology in 6G, offering an efficient means of delivering energy to a large quantity of low-power devices while transmitting data concurrently. To address the challenges of obstructions, high path loss, and significant energy consumption associated with long-distance communication, this work introduces a novel alternating iterative optimization strategy. The proposed approach combines active simultaneous transmission and reflection of reconfigurable intelligent surfaces (STAR-RIS) with SWIPT to maximize spectrum efficiency and reduce overall system energy consumption. This method addresses the considerable energy demands inherent in SWIPT systems by focusing on reducing the power output from the base station (BS) while meeting key constraints: the communication rate for information receivers (IRs) and minimum energy levels for energy receivers (ERs). Given complex interactions between variables, the solution involves an alternating iterative optimization process. In the first stage of this approach, the passive beamforming variables are kept constant, enabling the use of semi-definite relaxation (SDR) and successive convex approximation (SCA) algorithms to optimize active beamforming variables. In the next stage, with active beamforming variables fixed, penalty-based algorithms are applied to fine-tune the passive beamforming variables. This iterative process continues, alternating between active and passive beamforming optimization, until the system converges on a stable solution. The simulation results indicated that the proposed system configuration, which leverages active STAR-RIS, achieves lower energy consumption and demonstrates improved performance compared to configurations utilizing passive RIS, active RIS, and passive STAR-RIS. This evidence suggests that the proposed approach can significantly contribute to advancing energy efficiency in 6G systems.
Read full abstract