The main storage components of the maize endosperm are starch, proteins and lipids. Starch and proteins are heterogeneously deposited, leading to the formation of vitreous and floury regions at the periphery and at the centre of the endosperm. The vitreous/floury mass ratio is a key physical parameter of maize end-uses for the food, feed and non-food sectors, as well as for the resistance of seeds to environmental aggressions. To improve maize breeding for vitreousness, one of the main issues is to finely delineate the molecular and physicochemical mechanisms associated with the formation of endosperm texture. In this context, we use scanning transmission X-ray microscopy at the C K-edge on maize endosperm resin-embedded ultrathin sections. The combination of local near edge X-ray absorption fine structure (NEXAFS) spectroscopy and high-resolution images enable us to achieve a quantitative fine description of the spatial distribution of the main components within the endosperm.
Read full abstract