AbstractProtein properties can be modified by selective enzymatic hydrolysis. In this study, the alkaline metalloendopeptidase AprX (Serralysin; EC 3.4.24.40) from Pseudomonas paralactis was used for the tailored hydrolysis of different food proteins resulting in the production of protein hydrolysates with improved emulsifying properties. Sodium caseinate, wheat gluten and buffalo worm protein were used for AprX hydrolysis at 40 °C and pH 8 to cover a spectrum of different protein sources. A maximum degree of hydrolysis (DH) of 13.1 ± 0.2%, 14.2 ± 0.1% and 20.7 ± 0.1% was reached for sodium caseinate, wheat gluten and the worm protein, respectively. The corresponding hydrolysate properties were analyzed regarding their particle size, peptide composition, solubility, viscosity, surface hydrophobicity and interfacial tension. The emulsifying properties were investigated by the oil-droplet size, ζ-potential and stability of emulsions prepared from the hydrolysates. Using partially hydrolyzed sodium caseinate (DH = 10.6%) as an emulsifier lead to an eightfold increase of the emulsion stability (t1/2 = 180 ± 0 min) compared to unhydrolyzed sodium caseinate. The emulsion stability using wheat gluten hydrolysates (DH = 11.9%) was increased 30-fold (t1/2 = 45 ± 5 min). Simultaneously, the solubility of gluten was increased by 60%. Buffalo worm hydrolysates (DH = 14.6%) had a twofold (t1/2 = 85 ± 5 min) increased emulsion stability. In conclusion, AprX can be used to improve the solubility and emulsifying properties of food proteins at a relatively high DH.
Read full abstract