Considering that the presence of a leafy head is a key morphological characteristic that determines the yield and quality of Chinese cabbage, identifying the major genes regulating the formation of a leafy head is crucial for variety improvement. A heading-related gene, BrKS, was previously predicted from a non-heading mutant, nhm1, derived from a heading variety, which encodes a key enzyme involved in gibberellin biosynthesis. Here, another mutant, nhm2, was identified from the same EMS-mutagenized population, and the phenotype of nhm2 was consistent with that of nhm1. We crossed mutants nhm1 and nhm2, and their F1 plants exhibited the mutant phenotype, which indicated that their mutant genes were allelic. A single non-synonymous mutation in the fourth exon of BrKS in mutant nhm1 and another single non-synonymous mutation in the tenth exon of BrKS in mutant nhm2. The same gene mutation in mutants nhm1 and nhm2 produced a similar non-heading phenotype, which confirmed the role of BrKS in the leafy head formation of Chinese cabbage. RNA-Seq analysis indicated that a transcription factor gene, BrERF1A, which is associated with leaf development, significantly down-regulated expression in mutant nhm1, and after the mutant was treated with GA3, the expression level of BrERF1A was recovered, which indicated that BrKS might be involved in leafy head formation through regulating the expression level of BrERF1A. Our findings provide important clues for revealing the molecular mechanism of leafy head formation in Chinese cabbage.
Read full abstract