Fluorescence-based polymers have a wide variety of applications such as light-emitting diodes, optoelectronics, and biosensors. The present study endeavors towards the effect of TiO2 nanoparticles (calcined at various temperature) on the emission of Poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) and to induce multicolor emission. The TiO2 nanoparticles synthesized by sol-gel method were calcined at 400°C and 600°C. In situ polymerization was adopted to synthesize MEH-PPV / TiO2 nanocomposites and the structural characteristics of the nanocomposites were studied using Fourier transformed Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The photo-physical characteristics of the nanocomposites were investigated using UV-Visible spectroscopy, Photoluminescence spectroscopy, and Fluorescence microscopy. TiO2 nanoparticles calcined at 400°C demonstrates anatase phase, whereas the particles calcined at 700°C exhibits mixed phase of rutile and anatase. The study reveal that calcination temperature has a strong impact on the morphology of the synthesized nanoparticles. The photoluminescence spectra reveal that the incorporation of TiO2 nanoparticles enhances the red orange emission intensity of MEH-PPV, additionally exhibits emission at multiple wavelengths. Fluorescence microscopy evidences multiple colour emission from MEH-PPV/TiO2 nanocomposites. The multiple emission in the polymer nanocomposite is arised from the oxygen vacancies present in anatase and rutile phases of TiO2 nanoparticle.
Read full abstract