Plants have developed mechanisms to successfully co-exist in the presence of pathogenic organisms. Some interactions between plants and pathogens are based on recognition of specific elicitor molecules from avirulent pathogen races (avr gene products), which is described in the gene-for-gene resistance theory. Another type of resistance, multigenic (horizontal) resistance, is a less well-studied phenomenon that depends upon multiple genes in the plant host. All plants possess resistance mechamisms which can be induced upon pre-treatment of plants with a variety of organisms or compounds. This general phenomenon is known as induced systemic resistance (ISR). At least in some plant species, ISR depends on the timely accumulation of multiple gene products, such as hydrolytic enzymes, peroxidases or other gene products related to plant defences. The pre-treatment of plants with an inducing organism or compound appears to incite the plant to mount an effective defense response upon subsequent encounters with pathogens, converting what would have been a compatible interaction to an incompatible one. Our studies in three plant–pathogen systems clearly document that multigenic-resistant plants constitutively express specific isozymes of hydrolytic enzymes that release cell wall elicitors, which in turn may activate other defense mechanisms. ISR induces constitutive accumulation of these and other gene products prior to challenge. ISR is known to function against multiple organisms, and there is no specificity observed in the accumulation patterns of defense-related gene products when ISR is induced. It is therefore hypothesized that the constitutive accumulation of specific isozymes of hydrolytic enzymes, or other defense related gene products, is an integral part of both multigenic resistance and the phenomenon of ISR. Further, plants in which ISR has been activated appear to move from a latent resistance state to one in which a multigenic, non-specific form of resistance is active.
Read full abstract