AbstractThis article extends the semidiscrete maximal $L^p$-regularity results in Li (2019, Analyticity, maximal regularity and maximum-norm stability of semi-discrete finite element solutions of parabolic equations in nonconvex polyhedra. Math. Comp., 88, 1--44) to multistep fully discrete finite element methods for parabolic equations with more general diffusion coefficients in $W^{1,d+\beta }$, where $d$ is the dimension of space and $\beta>0$. The maximal angles of $R$-boundedness are characterized for the analytic semigroup $e^{zA_h}$ and the resolvent operator $z(z-A_h)^{-1}$, respectively, associated to an elliptic finite element operator $A_h$. Maximal $L^p$-regularity, an optimal $\ell ^p(L^q)$ error estimate and an $\ell ^p(W^{1,q})$ estimate are established for fully discrete finite element methods with multistep backward differentiation formulae.
Read full abstract