In this paper we study the charged electro-weak interactions in the de Sitter geometry. We develop the reduction formalism for the Proca field with the help of the solutions for the interacting fields. Perturbation theory is used for obtaining the definition of the transition amplitudes in the first order. We apply our formalism to the study of spontaneous vacuum emission of fermions, anti-fermions and W±\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$W^{\\pm }$$\\end{document} bosons in the expanding de Sitter universe. Our results are generalizations of the Weinberg–Salam electro-weak theory to curved space-time, in the case of W±\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$W^{\\pm }$$\\end{document} boson interaction with leptons. The probability and transition amplitude are found to be a quantities which depend on the Hubble parameter. Our analytical and graphical results prove that such perturbative processes are possible only for the large expansion conditions of the early Universe. The total probability and rate of transition are obtained for the case of large expansion and we use dimensional regularization for the momenta integrals. In the end we recover the Minkowski limit, where our probabilities vanish, thus confirming the well known fact that spontaneous vacuum emission of W±\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$W^{\\pm }$$\\end{document} bosons and fermions is forbidden in flat space-time due to energy–momentum conservation.
Read full abstract