C5-PFK (C5-perfluoroketone, C5F10O) is under wide consideration as an environmentally-friendly alternative gas to SF6 in high-voltage applications, because of its superior insulation performance. The aim of this work is to study theoretically the arc extinguishing performance and electric strength of C5-PFK.The arc extinguishing performance of C5-PFK was evaluated by analyzing and comparing the thermophysical properties of C5-PFK, SF6, CF4, CO2 and N2 plasmas. It was difficult to obtain the species formed in C5-PFK plasmas because of the complex C5-PFK molecular decomposition process. In this work, the decomposition process of C5-PFK and the related species were analyzed by the bond energy analysis method. For the species for which parameters such as the partition function and the enthalpy of formation were not available, computational chemistry methods were used to obtain the required data. The collision integrals were calculated using the phenomenological potential model. Using these results, the local thermodynamic equilibrium composition at temperatures from 300 to 30 000 K at 1â10 atm of pure C5-PFK was calculated by the method of minimization of the Gibbs free energy, and the corresponding transport coefficients were calculated by ChapmanâEnskog method. Through the comparison of the thermophysical properties, it was found that C5-PFK had similar characteristics to SF6, with large peaks in specific heat below 4500 K, indicating potentially good thermal interruption capability. However, the specific heat peak at 7000 K corresponding to CO decomposition may detract from the thermal interruption capability. Specific heat peaks at higher temperatures are associated with the breaking of double or triple bonds, and should be avoided if possible in the new alternative gases.The electric strength of C5-PFK was assessed using the molecular electrostatic potential, which can be accurately calculated or measured, and gives strong insights into important characteristics of the molecule. Based on the analysis of the molecular surface electrostatic potential and electric strength of C5-PFK, SF6, CF4, CO2, and N2, it is found that the positive potential area of the molecular surface has a strong correlation with the electric strength and is expected to be one of the predictors of electric strength. To verify this phenomenon, 36 kinds of particles were used for the correlation analysis. The correlation coefficient between the positive potential area and electric strength is up to 0.9 which means strong correlation.
Read full abstract