Cu/diamond composite is a promising thermal management material for heat dissipation of high-power electronic devices. Heat transfer models for a Cu-B/diamond composite with varying boron contents added in the Cu matrix were constructed using the finite element (FE) method, based on the results from transmission electron microscopy (TEM) characterization. The heat transfer behavior of the Cu/diamond composites was then investigated. The predicted effective thermal conductivities were compared to experimental values, using both analytical model calculation and FE simulation. The FE simulation effectively illustrates the dependence of thermal conductivity on interface structure evolution of the composite. The heat transfer behavior of the Cu-B/diamond composites varies as the boron content increases. In the Cu-0.3wt%B/diamond composite, most of the heat flow is concentrated and transferred along the diamond particles. In the Cu-1.0wt%B/diamond composite, the heat flux distribution and flow direction are similar to those in the Cu-0.3wt%B/diamond composite, but the heat flux is substantially lower. The heat transfer behavior is closely related to the interactions between the two phases in the composite and is intensively influenced by the evolution of interfacial carbide morphology. The FE simulation provides a more accurate prediction of effective thermal conductivity compared to the analytical model calculation, as it considers the reasonable interactions between the two phases relating to the actual interfacial structure. The findings provide a fundamental basis for optimizing the interfacial structure of Cu/diamond composites and further improving their thermal conductivity.
Read full abstract