Modulating the carrier dynamics to achieve the effective separation of photoexcited carriers is crucial for enhancing photoelectric conversion efficiency and advancing high-performance optoelectronic devices. A prototype group-III monochalcogenide heterostructure, GaSe/GaTe, has been proposed to exhibit a superior light-harvesting capability and highly tunable charge separation characteristics via nonadiabatic molecular dynamics (NAMD) simulations. The significant influence of stacking patterns on carrier dynamics is revealed, with electron (hole) transfer occurring within 97 (40) to 390 (126) fs, while the carrier lifetime is dramatically prolonged from 12 to 213 ns, facilitating effective electron-hole (e-h) pair separation. Notably, the AA' and A'A stacking configurations demonstrate remarkably extended carrier lifetimes of 213 and 161 ns, respectively, exceeding those observed in other 2D heterostructures. The weak nonadiabatic coupling and low-frequency phonon vibrational modes suppress e-h recombination, leading to a prolonged carrier lifetime. These findings offer atomic insights into stacking-dependent carrier dynamics, advancing 2D optoelectronic device design.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
174 Articles
Published in last 50 years
Related Topics
Articles published on Electron-hole Transfer
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
171 Search results
Sort by Recency