Direct interspecies electron transfer (DIET) has been considered as an effective mechanism for interspecies electron exchange in microbial syntrophy. Understanding DIET-capable syntrophic associations under energy-limited environments is important because these conditions more closely approximate those found in natural subsurface environments than in the batch cultures in the laboratory. This study, investigated the metabolic dynamics and electron transfer mechanisms in DIET-capable syntrophic coculture of Geobacter metallireducens and Geobacter sulfurreducens under electron donor-limited condition. The wild-coculture and the mutant-coculture with a citrate synthase-deficient G. sulfurreducens exhibited similar rates of syntrophic metabolism under ethanol-limited and ethanol-replete conditions. Transcriptomic analyses revealed that, in the mutant-coculture in which interspecies electron exchange was the sole electron source for G. sulfurreducens, the transcription of genes associated with uptake hydrogenase in G. sulfurreducens were significantly repressed and thus DIET tended to be the preferred mode of interspecies electron exchange under electron donor-limited condition. To overcome electron donor limitation, c-type cytochromes in the coculture actively moved from outer membrane to extracellular environment, potentially via increased secretion of outer-membrane vesicles. These results suggested a preferred electron transfer mechanism for DIET-capable syntrophic communities' survival in the electron donor-limited environments, providing valuable insights into the biogeochemical processes mediated by DIET in natural and engineered environments.
Read full abstract