The electron-beam physical vapor deposition (EBPVD) technique was selected for nickel oxide (NiOx) film deposition at room temperatures. NiOx film (18 nm thick) was deposited as a hole transporting material (HTM) for inverted perovskite solar cells (PSCs) onto a fluorine-doped tin oxide (FTO)-coated glass substrate at a chamber vacuum pressure of 4.6×104 Pa. PSCs were fabricated as a glass/FTO/NiOx(HTM)/CH3NH3PbI3/PC61BM/BCP/Ag structure with as-deposited and annealed (500 °C for 30 min) NiOx films. Under 100 mW cm-2 illumination, as-deposited and annealed NiOx as HTM in PSCs (0.16 cm2) showed a high-power conversion efficiency (PCE) of 13.20% and 13.24%, respectively. The as-deposited and annealed PSCs retained 72.2% and 76.96% of their initial efficiency in ambient conditions, correspondingly. This study highlights the possibility of achieving highly crystalline and finely disseminated NiOx films by EBPVD for fabricating efficient inverted PSCs.
Read full abstract