In the field of CO2 electrochemical conversion, [1] the use of semiconducting photocathodes instead of non-photoactive traditionally used electrodes (e.g., metals and carbon) could provide a real benefit in terms of energy gain because it allows the electrochemical process to be activated by photogenerated electrons. [2] In that context, silicon appears as one of the most promising semiconducting materials owing to its small bandgap (1.1 eV) able not only to harvest photons from a large portion of the solar spectrum but also to encompass the different proton-assisted multielectron reduction potentials for CO2. [3],[4],[5] Herein, we report that silicon photocathodes modified with electrodeposited Bi nanostructures are highly active for the photoelectrocatalytic conversion of CO2 to formate in aqueous electrolytic medium. p-type Si photocathodes functionalized with Bi2O3 catalyst were easily fabricated without an additive polymer layer using a one-step and fast electrodeposition method. Both composition and morphology of the deposited Bi cocatalyst could be tuned by controlling the electrodeposition time. The photocathode prepared from a 5 s electrodeposition exhibited the highest photocurrent density (-24.1 mA cm-2) with partial formate photocurrent density j formate = -17.4 mA cm-2 at -1.03 V vs Reversible Hydrogen Electrode (corresponding to a 0.84 V overpotential for CO2 to formate conversion).Such values highlight the excellent catalytic activity for CO2 electroreduction of our photocathodes, [6] outperforming that of recently reported Bi-based catalysts deposited on Si. [7] Moreover, under our conditions, the formate production rate reached 14.9 mg h-1 cm-2 with a Faradaic efficiency for formate of 72%. We anticipate that the conversion efficiency of CO2 could be further improved by using structured silicon surfaces, as recently demonstrated by ourselves for sunlight-driven water splitting, [8] and/or Bi nanostructures. [1] a) J. Qiao, Y. Liu, F. Hong, J. A. Zhang, J. Chem. Soc. Rev. 2014, 43, 631-675. b) C. Costentin, M. Robert, J. M. Saveant, Chem. Soc. Rev. 2013, 42, 2423−2436. [2] a) J. L. White, M. F. Baruch, J. E. Pander III, Y. Hu, I. C. Fortmeyer, J. E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T. W. Shaw, E. Abelev, A. B. Bocarsly, Chem. Rev. 2015, 115, 12888–12935. b) K. Maeda, Adv. Mater. 2019, 31, 1808205. [3] K. Sun, S. Shen, Y. Liang, P. E. Burrows, S. S. Mao, D. Wang, Chem. Rev. 2014, 114, 8662−8719. [4] a) D. He, T. Jin, W. Li, S. Pantovich, D. W. Wang, G. H. Li, Chem. Eur. J. 2016, 22, 13064. b) B. Kumar, J. M. Smieja, C. P. Kubiak, J. Phys. Chem. C 2010, 114, 14220. c) B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, C. P. Kubiak, Annu. Rev. Phys. Chem. 2012, 63, 541. [5] E. Torralba-Penalver, Y. Luo, J.-D. Compain, S. Chardon-Noblat, B. Fabre, ACS Catal. 2015, 5, 6138. [6] D. Fu, J. Tourneur, B. Fabre, G. Loget, Y. Lou, F. Geneste, S. Ababou-Girard, C. Mériadec, ChemCatChem. 2020, 12, 5819. [7] a) Q. Gong, P. Ding, M. Xu, X. Zhu, M. Wang, J. Deng, Q. Ma, N. Han, Y. Zhu, J. Lu, Z. Feng, Y. Li, W. Zhou, Y. Li, Nat. Commun. 2019, 10:2807. b) P. Ding, Y. Hu, J. Deng, J. Chen, C. Zha, H. Yang, N. Han, Q. Gong, L. Li, T. Wang, X. Zhao, Y. Li, Mater. Today Chem. 2019, 11, 80-85. [8] a) J. Tourneur, B. Fabre, G. Loget, et al. J. Am. Chem. Soc. 2019, 141, 11954. b) K. Oh, V. Dorcet, B. Fabre, G. Loget, Adv. Energy Mater. 2019, 1902963. Figure 1
Read full abstract