Extensive evidence indicates that the compromise of airway epithelial barrier function is closely linked to the development of various diseases, posing a significant concern for global mortality and morbidity. Flavonoids, natural bioactive compounds, renowned for their antioxidant and anti-inflammatory properties, have been used for centuries to prevent and treat numerous ailments. Lately, a growing body of evidence suggests that flavonoids can enhance the integrity of the airway epithelial barrier. The objective of this study was to investigate the impact of selected flavonoids representing different subclasses, such as kaempferol (flavonol), luteolin (flavone), and naringenin (flavanone), on transepithelial electrical resistance (TEER), ionic currents, cells migration, and proliferation of a human bronchial epithelial cell line (16HBE14σ). To investigate the effect of selected flavonoids, MTT assay, trypan blue staining, and wound healing were assessed. Additionally, transepithelial resistance and Ussing chamber measurements were applied to investigate the impact of the flavonoids on the electrical properties of the epithelial barrier. This study showed that kaempferol, luteolin, and naringenin at micromolar concentrations were not cytotoxic to 16HBE14σ cells. Indeed, in MTT tests, a statistically significant change in cell metabolic activity for luteolin and naringenin was observed. However, our experiments showed that naringenin did not affect the proliferation of 16HBE14σ cells, while the effect of kaempferol and luteolin was inhibitory. Moreover, transepithelial electrical resistance measurements have shown that all of the flavonoids used in this study improved the epithelial integrity with the slightest effect of kaempferol and the significant impact of naringenin and luteolin. Finally, our observations suggest that luteolin increases the Cl- transport through cystic fibrosis transmembrane conductance regulator (CFTR) channel. Our findings reveal that flavonoids representing different subclasses exert distinct effects in the employed cellular model despite their similar chemical structures. In summary, our study sheds new light on the diverse effects of selected flavonoids on airway epithelial barrier function, underscoring the importance of further exploration into their potential therapeutic applications in respiratory health.
Read full abstract