Green synthesized iron/manganese nanoparticles (Fe/Mn NPs), acted as an exogenous promoter to enhance the lignin-degrading bacteria Comamonas testosteroni FJ17 resulting in more efficient removal of bisphenol A (BPA). Batch experiments demonstrated that removal efficiency of BPA via cells at a BPA concentration of 10 mg·L−1 increased by 20.9 % when exposed to 100 mg·L−1 Fe/Mn NPs after 48 h (93.63 %) relative to an unexposed control group (72.70 %). TEM and 3D-EEM analysis confirmed that the cell membrane thickness increased from 47 to 80 nm under Fe/Mn NPs exposure, and the TB-EPS secretion was promoted. Meanwhile, Fe/Mn NPs facilitated greater electron transfer capacity of c-cytochrome (0.55 V reduction peak) and an unknown cytochrome substance (0.7 V oxidation peak) on the surface of cells. Studies of the effect of Fe/Mn NPs on both the growth and activity of laccase cells showed that both biomass and laccase secretion increased significantly during the logarithmic growth period (6–36 h). LC-MS analysis and toxicity assessment indicated that Fe/Mn NPs decreased the degradation time of BPA and efficiently reduced the toxicity of its by-products. Transcriptomic analysis revealed 315 up-regulation of the key genes associated with energy supply, membrane translocation, and metabolic pathways upon exposure to Fe/Mn NPs. Such as MFS transporter (2.27-fold), diguanylate cyclase (1.76-fold) and protocatechuate-3,4-dioxygenase (1.62-fold). Overall, Fe/Mn NPs accelerated proliferation by enhancing metabolic capacity and nutrient transport processes, which serves to improve the efficiency of BPA removal.
Read full abstract