Abstract We propose a compact, thermally reconfigurable dual-port microstrip antenna featuring a spiral-shaped design and shape-memory alloy (SMA) that enable switching between wideband and narrowband operation for 5G/6G communication systems. The SMA’s thermally induced shape-memory behavior allows reconfiguration in response to temperature changes without the need for electronic or optical control circuits, thus avoiding issues such as self-interference problem, high costs, regular maintenance requirements, and durability concerns. In the wideband mode, measured results show that Port 1 covers 4.7–10.5 GHz and Port 2 covers 4.5–8.3 GHz, which closely agrees with simulations. When the SMA is activated by heat, the antenna switches to the narrowband mode, where Port 1 operates at 7.6 and 9.5 GHz, and Port 2 operates at 8.9 GHz. A ground-plane isolation element ensures low coupling between the ports, with the envelope correlation coefficient remaining below 0.1 across all configurations. The antenna reaches a peak gain of 5.2 dBi and maintains consistent performance through repeated switching. By combining spiral-shaped geometry with a responsive smart material, this work presents a novel and efficient approach for designing reconfigurable dual-port antennas suitable for future wireless technologies.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
40874 Articles
Published in last 50 years
Articles published on Efficient Approach
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
39500 Search results
Sort by Recency