Polyethylenimine (PEI) is a commonly used cationic polymer for small-interfering RNA (siRNA) delivery due to its high transfection efficiency at low commercial cost. However, high molecular weight PEI is cytotoxic and thus, its practical application is limited. In this study, different formulations of low molecular weight PEI (LMW-PEI) based copolymers polyethylenimine-g-polycaprolactone (PEI-PCL) (800Da-40kDa) and PEI-PCL-PEI (5-5-5kDa) blended with or without polyethylene glycol-b-polycaprolactone (PEG-PCL) (5kDa-4kDa) are investigated to prepare nanoparticles via nanoprecipitation using a solvent displacement method with sizes ≈100nm. PEG-PCL can stabilize the nanoparticles, improve their biocompatibility, and extend their circulation time in vivo. The nanoparticles composed of PEI-PCL-PEI and PEG-PCL show higher siRNA encapsulation efficiency than PEI-PCL/PEG-PCL based nanoparticles at low N/P ratios, higher cellular uptake, and a gene silencing efficiency of ≈40% as a result of the higher molecular weight PEI blocks. These results suggest that the PEI-PCL-PEI/PEG-PCL nanoparticle system could be a promising vehicle for siRNA delivery at minimal synthetic effort.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
1754 Articles
Published in last 50 years
Articles published on Silencing Efficiency
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
1708 Search results
Sort by Recency