Rhythms are the most natural cue for temporal anticipation because many sounds in our living environment have rhythmic structures. Humans have cortical mechanisms that can predict the arrival of the next sound based on rhythm and periodicity. Herein, we showed that temporal anticipation, based on the regularity of sound sequences, modulates peripheral auditory responses via efferent innervation. The medial olivocochlear reflex (MOCR), a sound-activated efferent feedback mechanism that controls outer hair cell motility, was inferred noninvasively by measuring the suppression of otoacoustic emissions (OAE). First, OAE suppression was compared between conditions in which sound sequences preceding the MOCR elicitor were presented at regular (predictable condition) or irregular (unpredictable condition) intervals. We found that OAE suppression in the predictable condition was stronger than that in the unpredictable condition. This implies that the MOCR is strengthened by the regularity of preceding sound sequences. In addition, to examine how many regularly presented preceding sounds are required to enhance the MOCR, we compared OAE suppression within stimulus sequences with 0-3 preceding tones. The OAE suppression was strengthened only when there were at least three regular preceding tones. This suggests that the MOCR was not automatically enhanced by a single stimulus presented immediately before the MOCR elicitor, but rather that it was enhanced by the regularity of the preceding sound sequences.
Read full abstract