The regulation of Ca2+ uptake by receptors is incompletely understood. It has been proposed that the Ca2+ permeability of the plasma membrane increases in response to depletion of a critical intracellular Ca2+ storage compartment (Takemura, H., Hughes, A. R., Thastrup, O., and Putney, J. W. (1989) J. Biol. Chem. 264, 12266-12271). This hypothesis is based largely on the effect of thapsigargin, an inhibitor of endomembrane CA(2+)-ATPases. Due to the existence of an endogenous leak, inhibition of Ca2+ uptake by thapsigargin induces depletion of the stores. This is accompanied by increased plasmalemmal Ca2+ permeability, without change in the level of inositol phosphates. On the other hand, depletion of the intracellular stores by 2,5-di(tert-butyl)-1,4-hydroquinone (BHQ), a chemically unrelated inhibitor of the Ca(2+)-ATPases, fails to induce Ca2+ influx (Kass, G. E., Duddy, S. K., Moore, G. A., and Orrenius, S. (1989) J. Biol. Chem. 264, 15192-15198). In an attempt to reconcile these observations, we analyzed in lymphocytes the mode of action of thapsigargin and BHQ. In addition, we tested the effects of cyclopiazonic acid (CPA), a blocker of the skeletal muscle sarcoplasmic reticulum Ca(2+)-ATPase. All three compounds released Ca2+ from a common intracellular compartment. Thapsigargin and low concentrations of BHQ and CPA concomitantly elevated the plasmalemmal Ca2+ permeability. Higher concentrations of BHQ and CPA produced a secondary inhibition of the Ca2+ entry pathway, by a mechanism seemingly unrelated to their effects on the internal stores. This inhibitory side effect can account for the reported discrepancies between the effects of thapsigargin and BHQ. The data provide further support for the notion that endomembrane Ca2+ stores are functionally coupled to the plasma membrane Ca2+ permeability pathway.
Read full abstract