This paper presents the analytical research and characterization of optical Binary Phase Shift Keying (BPSK) for single-tone sinusoidal and digital signals. The mathematical analysis and simulation for optimal modulation depth are proposed in this paper for maximum efficiency of the output modulated signal. The modulation depth is analysed with suitable Radio Frequency (RF) drive voltage for message signal and the effect of modulation depth on carrier suppression and higher order harmonics over fundamental tone is analysed theoretically and with simulation. To achieve phase modulation in this work, an external modulation technique via the Mach-Zehnder Modulator (MZM) is used, and an optical source using a narrow line width Distributed Feed Back (DFB) laser is used to minimise phase noise. The simulation and characterization results strongly support the mathematical analysis of the proposed criteria for suitable RF drive over half wave voltage for optimal detection and maximum message signal efficiency.
Read full abstract