Inertial microfluidic technologies have proven effective for particle focusing and separation in many microchannels, typically the channels with the rectangular and trapezoidal shapes. To advance particle focusing in complex channels, we propose a spiral channel combining rectangular and concave cross-sections for high-resolution particle and cell focusing and separation. Numerical simulations were conducted to illustrate the effects of channel geometry on secondary flow distribution and particle focusing positions. The simulation shows the concave cross-section generates two asymmetrical Dean vortices skewing towards the inner and outer channel walls, resulting to stronger flow velocity magnitudes near the walls than the channel center. Consequently, larger particles focus near the inner wall, while smaller particles are trapped closer to the outer wall under the influence of the stronger velocity magnitude near the walls. A microfluidic chip with the proposed channelgeometry, along with a traditional rectangular channel, was fabricated by 3D printing and PDMS casting. Fluorescent microbeads were used to investigate inertial focusing and separation behaviors in the microfluidicchips. Experimental results show that the concave channel facilitates particle focusing or trapping much closer to the walls than the traditional rectangular channel, achieving better separation resolution. Finally, the proposed channel was applied to separate lung cancer A549 cells from human blood, achieving a cancer cell recovery rate of ~ 84.78% (enrichment ratio over 820-fold) and a blood cell rejection rate of ~ 99.88%. This innovative channel design in inertial microfluidics offers new insights for enhanced particle focusing and holds significant promise for cell manipulation with improved separation resolution.
Read full abstract