Delocalization of the unpaired electron in π-conjugated radicals has profound implications for their chemistry, but direct and quantitative characterization of this electronic structure in isolated molecules remains challenging. We apply hyperfine-resolved microwave rotational spectroscopy to rigorously probe π-delocalization in propargyl, CH2CCH, a prototypical resonance-stabilized radical and key reactive intermediate. Using the spectroscopic constants derived from the high-resolution cavity Fourier transform microwave measurements of an exhaustive set of 13C- and 2H-substituted isotopologues, together with high-level ab initio calculations of zero-point vibrational effects, we derive its precise semiexperimental equilibrium geometry and quantitatively characterize the spatial distribution of its unpaired electron. Our results highlight the importance of considering both spin-polarization and orbital-following contributions when interpreting the isotropic hyperfine coupling constants of π radicals. These physical insights are strengthened by a parallel analysis of the isoelectronic species cyanomethyl, CH2CN, using new 13C measurements also reported in this work. A detailed comparison of the structure and electronic properties of propargyl, cyanomethyl, and other closely related species allows us to correlate trends in their chemical bonding and electronic structure with critical changes in their reactivity and thermochemistry.
Read full abstract