In mini-grids and marine-isolated grids, power generation gas turbines are subjected to rapid start-up, shutdown, and acceleration/deceleration. This sudden load change can pose a significant impact on the power grid, severely affecting the operational characteristics of gas turbines. To understand the dynamic characteristics of the gas turbine in the transitional processes, this testing takes twin-shaft medium-sized power generation gas turbines as the test object, and goes through the process of startup, acceleration, deceleration, acceleration, shutdown in one hour, and repeats this process 40 times continuously. With fuel flow as the control parameter and power turbine outlet temperature and high-pressure turbine speed as the controlled parameters, the parameter response rate of the gas turbine under various transition processes is analyzed and the effect of thermal inertia on the gas turbine mass temperature as well as speed is studied. Research findings: During the transition processes, the gas temperature exhibited an axial gradient distribution in the channel. In both the acceleration and deceleration processes, the working fluid temperature gradually decreased along the flow direction. And thermal inertia posed different extents of impact on the dynamic characteristics of the gas turbine under different transitional processes. In the same transition process, the impacts of thermal inertia on the response speeds of temperature and rotational speed varied. The results of this study help to more accurately predict the operating state of the gas turbine during the transition process and lay the foundation for the dynamic simulation model of the non-adiabatic gas turbine.
Read full abstract