Material design and preparation based on constructing heterogeneous microstructures can break the conventional performance limitations of fine-grained magnesium alloys. In this study, AZ61 alloys processed via multi-pass equal channel angular pressing (ECAP) were subjected to single-pass rolling (SPR) with increased rolling reductions. The effect of rolling reduction on the formation of heterogeneous microstructure and the mechanical properties of the alloy was investigated. Microstructural examinations revealed that a heterogeneous microstructure was formed in the alloy at varied rolling reductions, but the desired heterostructure with higher fine grain contents could only be achieved at increased rolling reduction. This was mainly due to the fact that the alloy underwent partial dynamic recrystallization (PDRX) under SPR, and PDRX more easily occurred with higher rolling reduction. The tensile test results showed that with increased rolling reduction, the strength of the alloy first increased and then decreased slightly, with the ductility steadily increasing. Improved mechanical properties were achieved in the alloy rolled at increased rolling reductions owing to the heterogeneous microstructure with a greater content of fine grains.
Read full abstract