Depression is a serious disabling disease worldwide. Accumulating evidence supports that there is a close relationship between depression and inflammation, and then inhibition of neuroinflammation may be another mechanism for the treatment of depression. Transcutaneous auricular vagus stimulation (taVNS), as a noninvasive transcutaneous electrical stimulation, could effectively treat depression, but its mechanism is unclear. In this study, rats with depression-like behavior were induced by intraperitoneal injection of lipopolysaccharide (LPS). The rats were randomly divided to control group, LPS group, taVNS + LPS group, and the same as the α7 nicotinic acetylcholine chloride receptor (α7nAChR) (- / -) gene knockout rats. The expressions of tumor necrosis factor alpha (TNF-ɑ) and phosphorylated-Janus kinase2 (p-JAK2), phosphorylated-signal transducer and activator of transcription3(p-STAT3) in the hypothalamus, amygdala, and hippocampus were detected by Western blot. We observed that LPS significantly decreased the sucrose preference, the time of into the open arms in the elevated plus maze, and the number of crossing and reaping in the open field test. TaVNS treatment improves these depression-like behaviors, but taVNS is not effective in α7nAChR (- / -) gene knockout rats. The expression of TNF-ɑ significantly increased, and the expression of p-Jak2 and p-STAT3 markedly decreased in the hypothalamus and amygdala induced by LPS. TaVNS could significantly reverse the abovementioned phenomena but had rare improvement effect for α7nAChR (- / -) rats. We conclude that the antidepressant effect of taVNS for LPS-induced depressive rats is related to α7nAchR/JAK2 signal pathway in the hypothalamus and amygdala.
Read full abstract