Magnetic Resonance Angiography (MRA) is widely used for cerebrovascular assessment, with Time-of-Flight (TOF) MRA being a common non-contrast imaging technique. However, maximum intensity projection (MIP) images generated from TOF-MRA often include non-essential vascular structures such as external carotid branches, requiring manual editing for accurate visualization of intracranial arteries. This study proposes a deep learning-based semantic segmentation approach to automate the removal of these structures, enhancing MIP image clarity while reducing manual workload. Using DeepLab v3+, a convolutional neural network model optimized for segmentation accuracy, the method achieved an average Dice Similarity Coefficient (DSC) of 0.9615 and an Intersection over Union (IoU) of 0.9261 across five-fold cross-validation. The developed system processed MRA datasets at an average speed of 16.61 frames per second, demonstrating real-time feasibility. A dedicated software tool was implemented to apply the segmentation model directly to DICOM images, enabling fully automated MIP image generation. While the model effectively removed most external carotid structures, further refinement is needed to improve venous structure suppression. These results indicate that deep learning can provide an efficient and reliable approach for automated cerebrovascular image processing, with potential applications in clinical workflows and neurovascular disease diagnosis.
Read full abstract