Anomalous east-west asymmetric anomalies were seen in sea surface temperature (SST), and convective activity over the equatorial Indian Ocean during October-December 1997. Using NCEP/NCAR reanalysis and sea surface height data obtained from TOPEX/POSEIDON satellite altimeter, its triggering process and strengthening mechanism are identified. The climatological wind over the equatorial Indian Ocean exhibits different seasonal cycle between its western and eastern region. During the summer monsoon season, westerly wind prevails over the western Indian Ocean, on the other hand, easterly wind is dominant over the eastern Indian Ocean at almost the same time. During the 1997 summer, divergent easterly wind anomalies were obvious over the equatorial Indian Ocean due to a warm episode of the El Nino, which weakened (accelerated) the climatological westerly (easterly) wind over the western (eastern) Indian Ocean. As a result, the east-west SST contrast was produced in the succeeding autumn through changing evaporative cooling and upwelling. Corresponding to these SST changes, the convective activities were enhanced (suppressed) over the western (eastern) Indian Ocean and actual wind became easterly in place of climatological westerly wind during October-December 1997. The above easterly anomalies induced westward-moving downwelling Rossby waves, and led to the maximum SST in January 1998 in the western Indian Ocean. On the other hand, eastward-moving downwelling Kelvin waves were generated after the termination of easterly wind anomalies, which were consistent with the SST warming in the eastern Indian Ocean for the period February-June 1998. In this manner, a coupling process between the modulated Walker Circulation associated with the El Nino event and the monsoon circulation from summer to autumn is a crucial factor for inducing the above asymmetric anomalies. Moreover, the oceanic waves are found to be closely related with enhancement of these asymmetric structures.
Read full abstract