The shutdown of earth pressure balance (EPB) shield tunneling in gravel stratum can easily lead to significant unexpected ground deformation. In order to study the response of gravel strata during shield shutdown and the characteristic change of soil state in the chamber, this paper establishes a coupled Eulerian-Lagrangian finite element method (CEL-FEM) coupling analysis model that reflects the interaction between the spoiled soil and gravel strata. The plastic flow parameters of CEL spoiled soil are calibrated using the slump method, and a quantitative relationship between the slump value, plastic flow parameters, equivalent coefficient of loosening, and excavation face support pressure is established. The reliability and applicability of CEL method in the simulation of shield shutdown are verified by the field measurements. Results show that: (1) The chamber’s soil equivalent loose coefficient is inversely proportional to the soil slump value which is related to soil’s plastic flow parameters. (2) The shield shutdown in gravel strata has a more significant impact on the deep strata displacement than on the surface. (3) During the shield shutdown stage, the chamber pressure should be dynamically adjusted based on the soil deformation characteristics, and an increase of 16% could result in a stable rebalance.
Read full abstract